

Lecture 09: CNN Dataflow & Hardware Accelerators

Recap

- Federated Learning
- Distributed DNN Training
- Distributed DNN Inference
- Speculative Decoding

Notes

- Project Proposal due Thursday
 - Signup your team
- Mid-semester Course Feedback
- Midterm Exam Review

Topics

- Hardware accelerator: Overview
- Convolutional operation conversion
- Hardware architecture of CNN accelerator
- Systolic array
- Popular accelerator design
 - \circ Eyeriss
 - o Diannao
 - Cnvlutin
 - EIE

Hardware Support for DNN

- GPU is better than CPU in terms of throughput for both Neural Network training and inference.
 - GPU leverages the highly parallelized architecture of its computing units to handle Ο computational intensive operations.
 - GPU has 10x-20x higher throughput than CPU. Ο
- However, GPU:
 - General purpose. Ο
 - Power consumption and latency is high. Ο
 - Does not support sophisticated pruning and quantization algorithms. Ο

5

Hardware Support for DNN

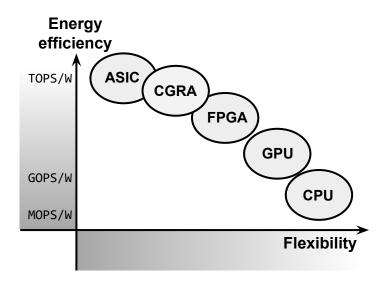
- ASIC-based implementations have been recently explored to accelerate the DNN inference.
 - Google's TPU, Apple's Neural Engine, Cerebras Al chip, ...
- FPGA-based accelerators for DNN inference have been recently developed.
 - Has good programmability and flexibility
 - Short development cycles
 - Can be used as a benchmark before implementing on ASIC

Tensor Processing Unit (Google)

Alveo Accelerator Card (Xilinx)

6

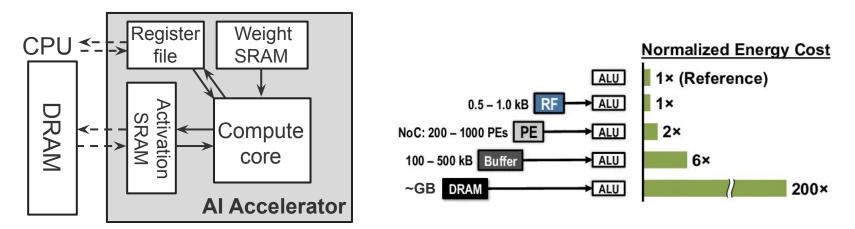
Flexibility & Performance



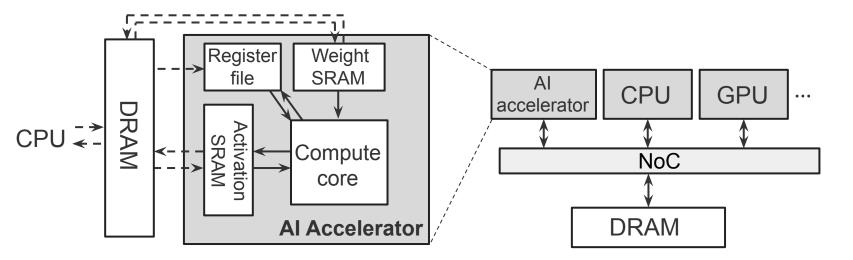
 ASIC offers the highest energy efficiency but is only suitable for specific applications.

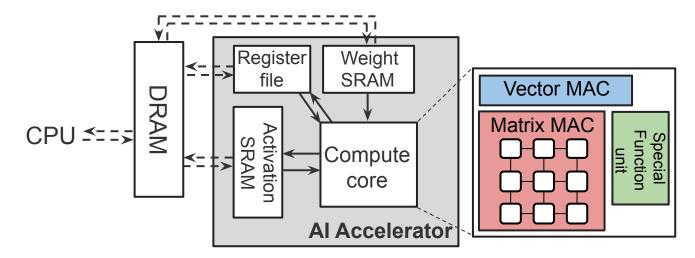
 The CPU is a general-purpose processor but has the lowest energy efficiency.

• Making any chip is a costly, difficult and lengthy process typically done by teams of 10 to 1000's of people depending on the size and complexity of the chip.

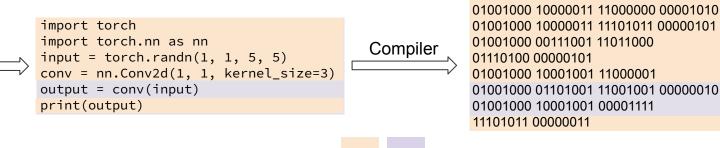


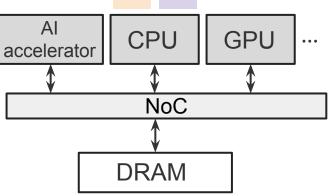
• The AI accelerator can execute part of the machine code that is related to the AI workload.



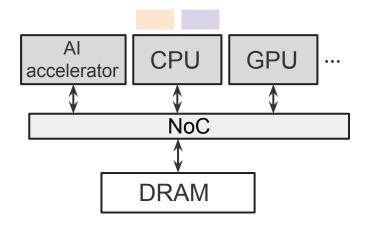


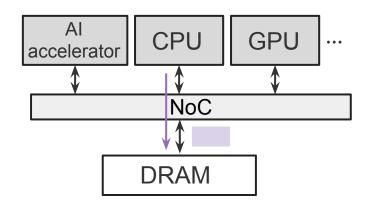
- The compute core consists of Multiply and accumulator (MAC) engine for 2D matrix multiplication.
- It also contains vector multiplier MAC as well as special function unit.

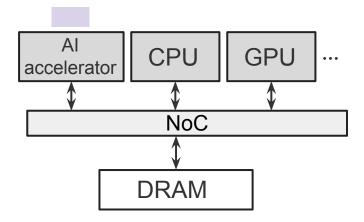


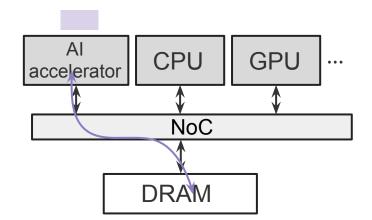


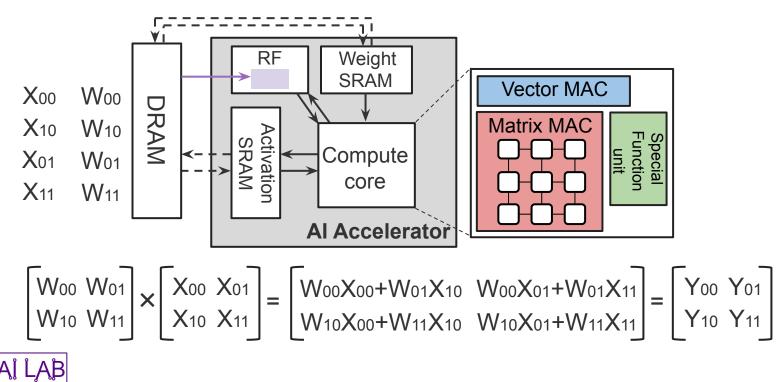
01001000 10001001 11011000

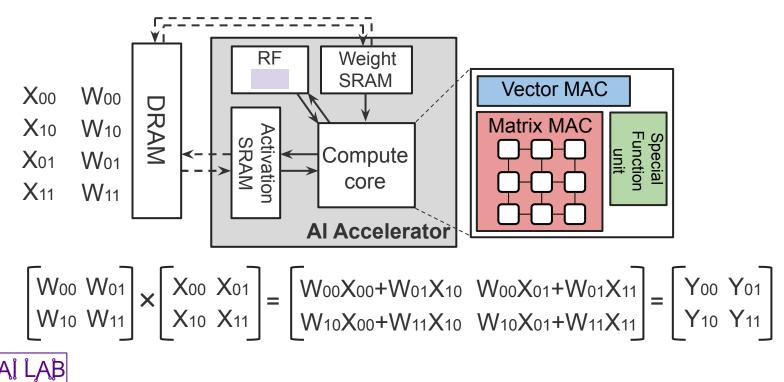


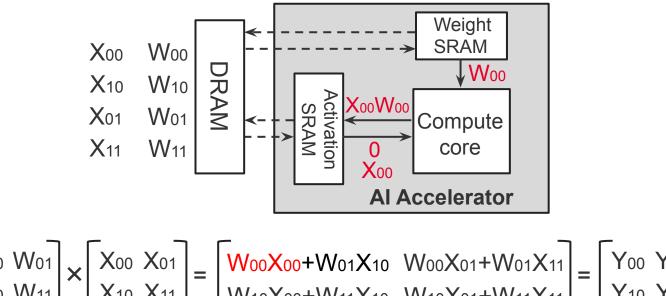


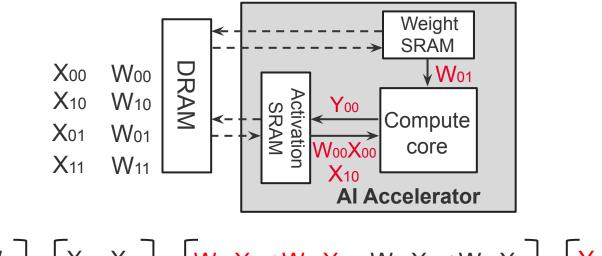




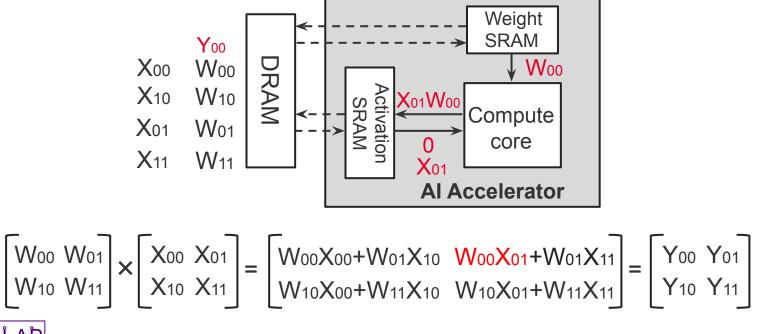


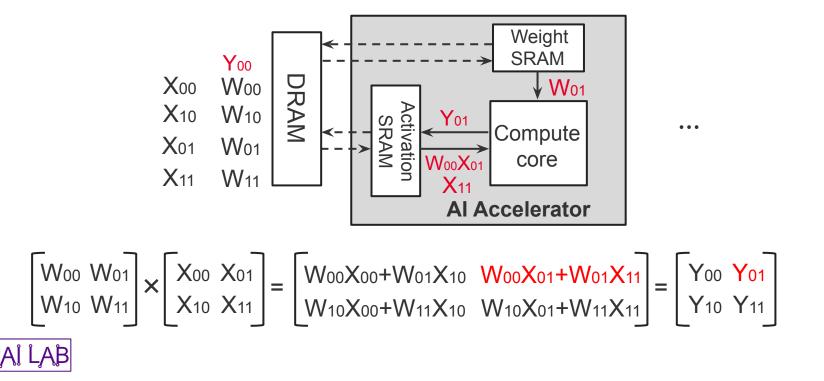


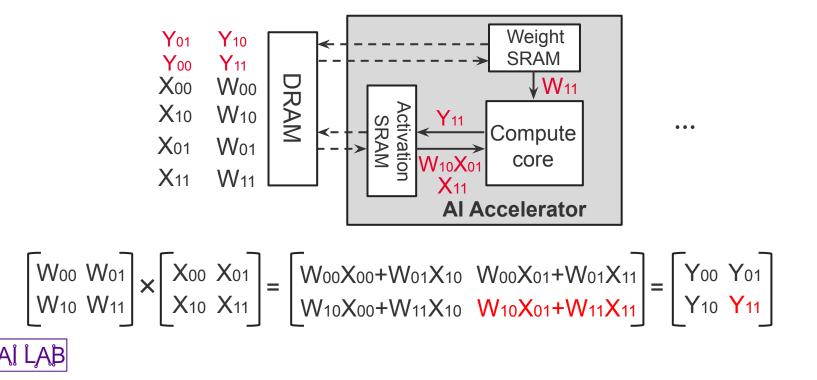




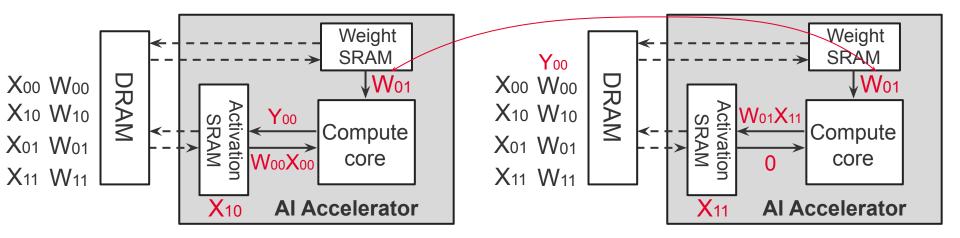
 $\begin{bmatrix} W_{00} & W_{01} \\ W_{10} & W_{11} \end{bmatrix} \times \begin{bmatrix} X_{00} & X_{01} \\ X_{10} & X_{11} \end{bmatrix} = \begin{bmatrix} W_{00}X_{00} + W_{01}X_{10} & W_{00}X_{01} + W_{01}X_{11} \\ W_{10}X_{00} + W_{11}X_{10} & W_{10}X_{01} + W_{11}X_{11} \end{bmatrix} = \begin{bmatrix} Y_{00} & Y_{01} \\ Y_{10} & Y_{11} \end{bmatrix}$





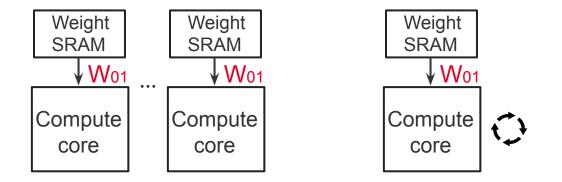


Memory Access Reduction



• The computation and memory access pattern can be changed to minimize the computational cost without impacting the results.

Memory Access Reduction

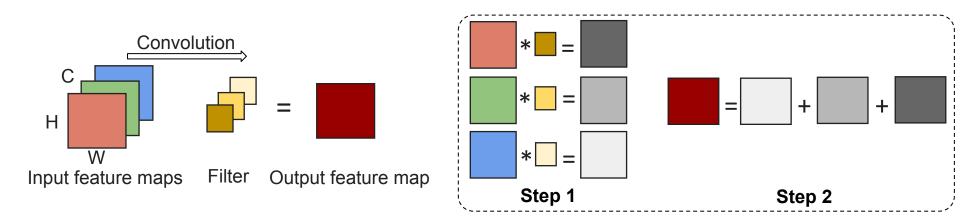


• It is preferable to minimize memory access by maximizing the reuse of loaded data.

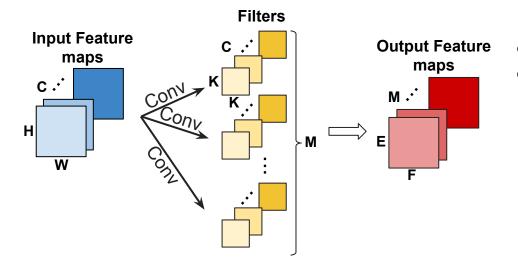
Topics

- Hardware accelerator: Overview
- Convolutional operation conversion
- Hardware architecture of CNN accelerator
- Systolic array
- Popular accelerator design
 - \circ Eyeriss
 - o Diannao
 - Cnvlutin
 - EIE

Convolutional Layers

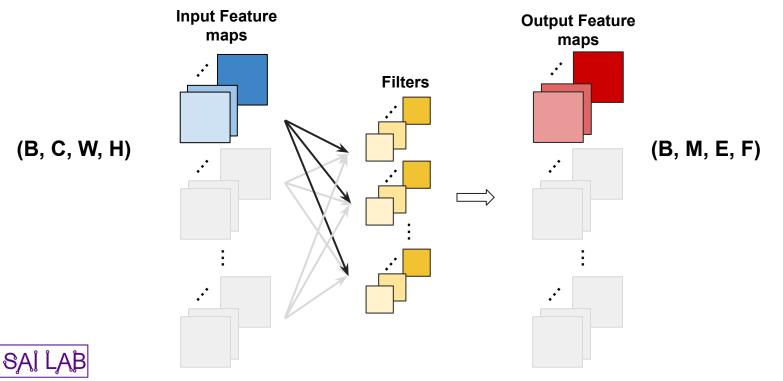


• Core building block of a CNN, it is also the most computational intensive layer.

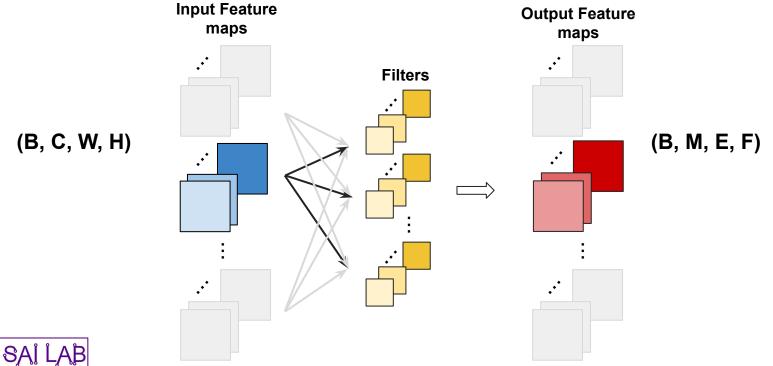


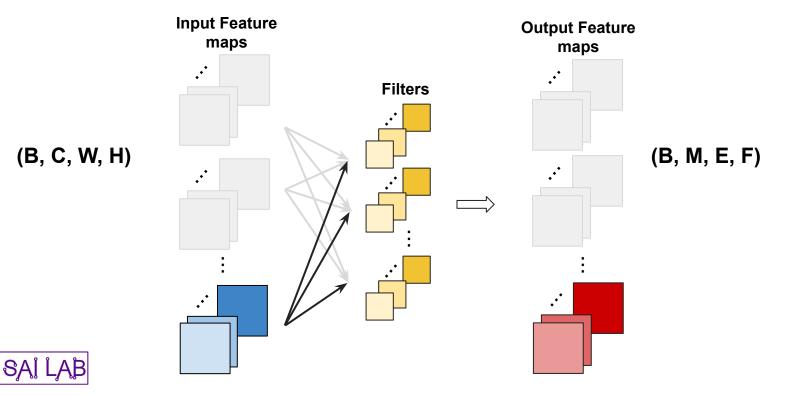
- Number of MACs: M×K×K×C×E×F
- Storage cost: 32×(M×C×K×K+C×H×W+M×E×F)

C: number of input channels H,W: size of the input feature maps M: number of weight filters K: weight kernel size E,F: size of the output feature maps



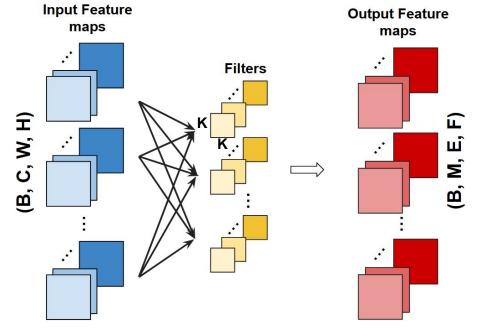
26





28

Computational Cost: Standard Convolution



Number of MACs: B×M×K×K×C×E×F

 Storage cost: 32×(M×C×K×K+B×C×H×W+B×M×E×F)

B: batch size
C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

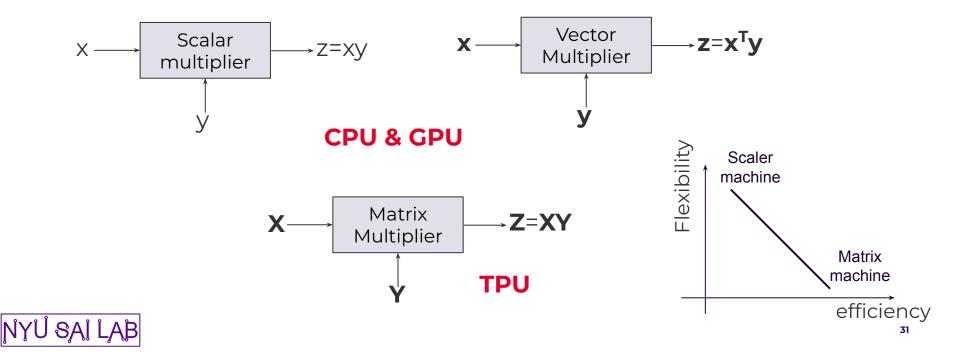
- We need to iterate over seven dimensions:
 - B, M, C, E, F, K(kernel width), K (kernel height)

Computational Dataflow for CNN

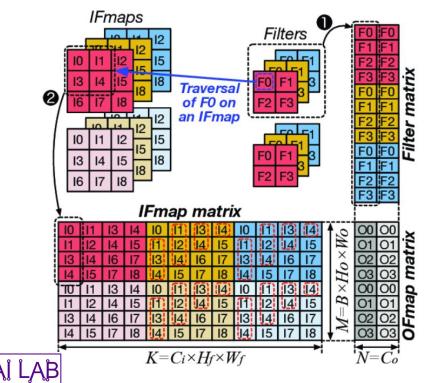
for b = 1 to B for m = 1 to M for c = 1 to C for w = 1 to E for h = 1 to F for k_1 = 1 to K for k_2 = 1 to K out[b][m][e][f] += in[b][c][e+k_1-(K+1)/2][f+k_2-(K+1)/2] * filter[m][c][k_1][k_2];

- This simple loop nest can be transformed in numerous ways to capture different reuse patterns of the activations and weights and to map the computation to a hardware accelerator implementation.
- A CNN's dataflow defines how the loops are ordered, partitioned, and parallelized
- We can use the scaler machine to compute the results of CNN using this for loop

Computational Dataflow for CNN

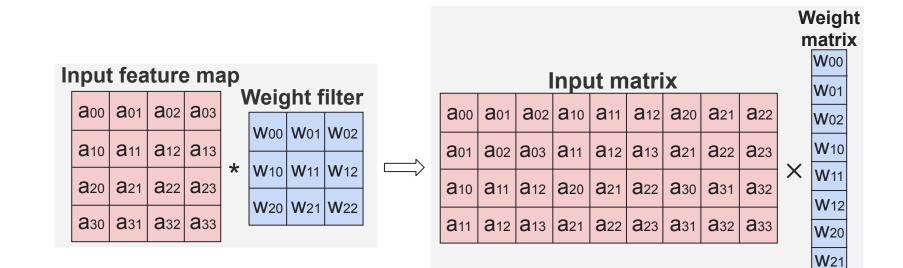


How to Convert to Matrix Multiplication?



 A standard Convolutional operation can be converted to 2D matrix multiplication using Im2Col operations.

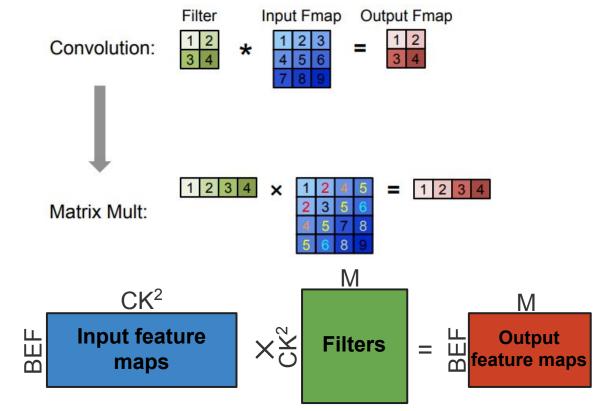
How to Convert to Matrix Multiplication?



33

W22

How to Convert to Matrix Multiplication?



NYU SAI LAB

Tiling

• In order to handle matrix multiplication with large size, it is usually decomposed into tiles.

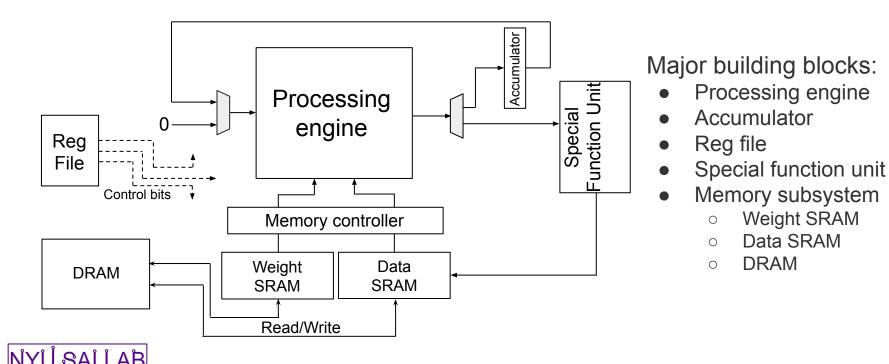
$$\begin{bmatrix} W_{00} & W_{01} \\ W_{10} & W_{11} \end{bmatrix} \times \begin{bmatrix} X_{00} & X_{01} \\ X_{10} & X_{11} \end{bmatrix} = \begin{bmatrix} W_{00}X_{00} + W_{01}X_{10} & W_{00}X_{01} + W_{01}X_{11} \\ W_{10}X_{00} + W_{11}X_{10} & W_{10}X_{01} + W_{11}X_{11} \end{bmatrix} = \begin{bmatrix} Y_{00} & Y_{01} \\ Y_{10} & Y_{11} \end{bmatrix}$$

• Each of W_{ij} and X_{ij} can be a sub-matrix.

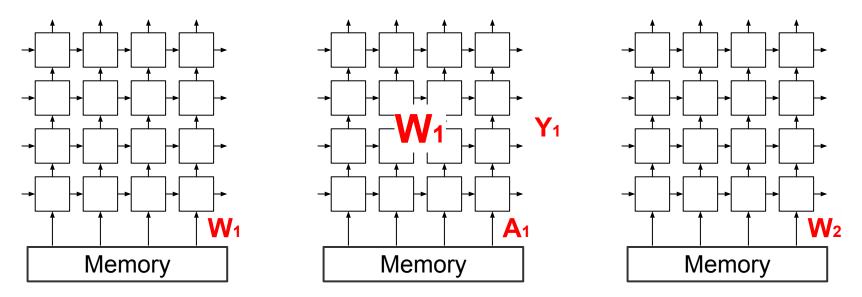
Topics

- Hardware accelerator: Overview
- Convolutional operation conversion
- Hardware architecture of CNN accelerator
- Systolic array
- Popular accelerator design
 - \circ Eyeriss
 - Diannao
 - Cnvlutin
 - EIE

Hardware Architectures for DNN Processing

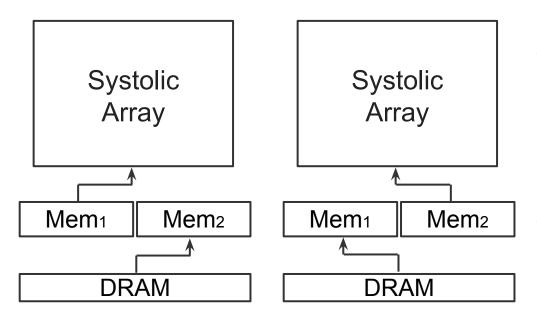


Computing Paradigms



Spatial architecture can achieve great reuse of the extracted content,
 leading to a reduced memory access cost.

Double Buffering



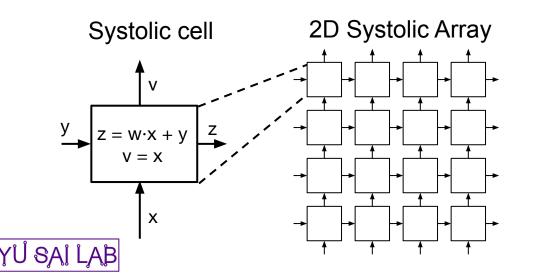
- Double buffering in hardware design is a technique used to improve the efficiency and performance of data processing, especially in systems that require smooth and continuous data transfer.
- The idea is to overlap the data production and consumption processes to avoid delays.

Topics

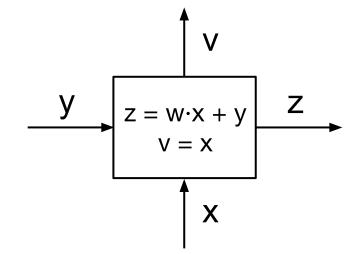
- Hardware accelerator: Overview
- Convolutional operation conversion
- Hardware architecture of CNN accelerator
- Systolic array
- Popular accelerator design
 - \circ Eyeriss
 - Diannao
 - Cnvlutin
 - EIE

Systolic Array (Weight Stationary Version)

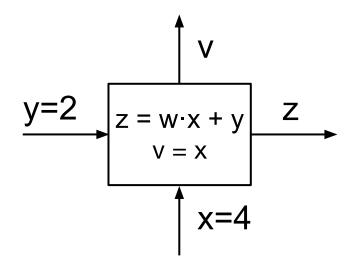
- Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982
- 2D grid of multiplier-accumulators (MACs) for matrix multiplication
- Used by Google TPU for deep learning (2017), etc

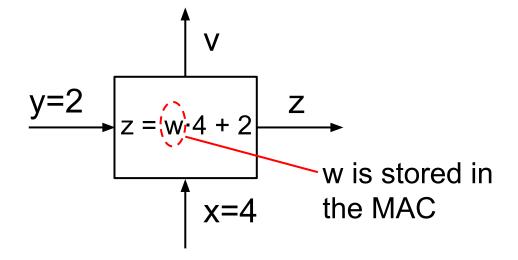


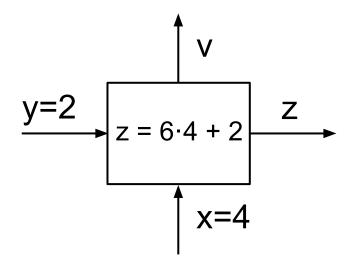
TPU (Google)

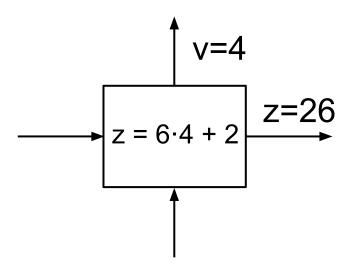


- Takes data (x and y) as input
- w stays in the systolic cell
- Performs a multiply-accumulate operation



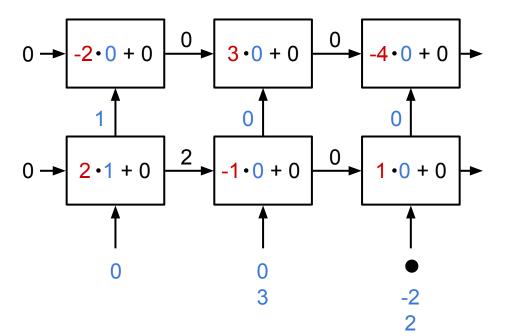




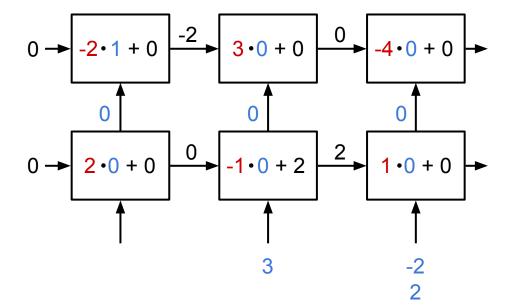


Weight Data Result Matrix Matrix Matrix $\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 6 & 1 \end{bmatrix}$ $0 \rightarrow -2 \cdot 0 + 0 \rightarrow 3 \cdot 0 + 0$ $|-4\cdot 0+0|$ 0 → 2 • 0 + 0 **-1**•**0** + 0 1 • 0 + 0 ► Skewed C input 3 -2 2

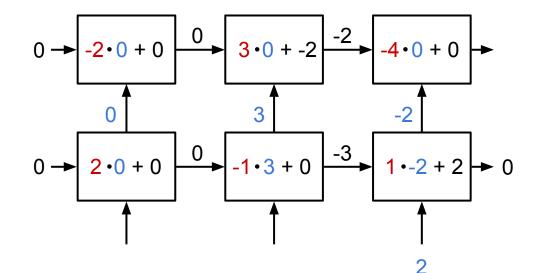
Weight Data Result Matrix Matrix Matrix $\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 6 & 1 \end{bmatrix}$



Weight Data Result Matrix Matrix Matrix $\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 6 & 1 \end{bmatrix}$



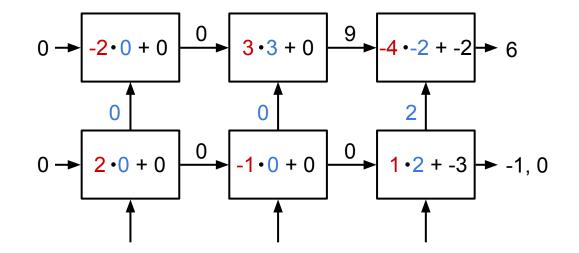
Weight Data Matrix Data Matrix Matrix Matrix Matrix Matrix Matrix $\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 6 & 1 \end{bmatrix}$



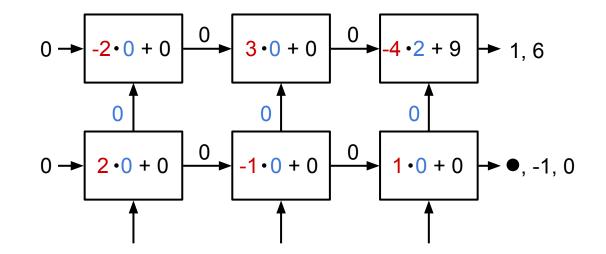
Weights in red are preloaded into the systolic array

50

Weight Data Result Matrix Matrix Matrix $\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 6 & 1 \end{bmatrix}$



Weight Data Result Matrix Matrix Matrix $\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -4 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 3 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 6 & 1 \end{bmatrix}$

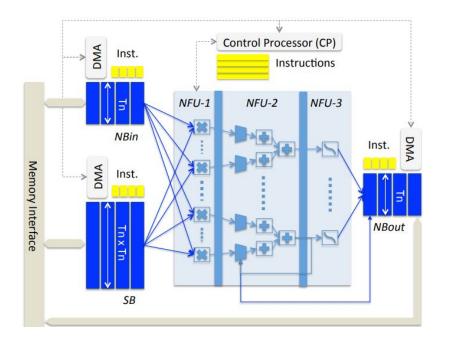


Topics

- Convolutional operation conversion
- Hardware architecture of CNN accelerator
- Systolic array
- Popular accelerator design
 - Eyeriss
 - o Diannao
 - Cnvlutin
 - EIE

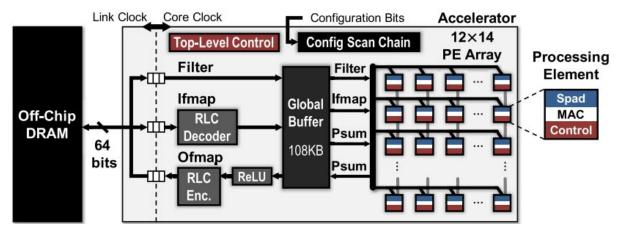
Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks." *IEEE journal of solid-state circuits* 52.1 (2016): 127-138.

Diannao



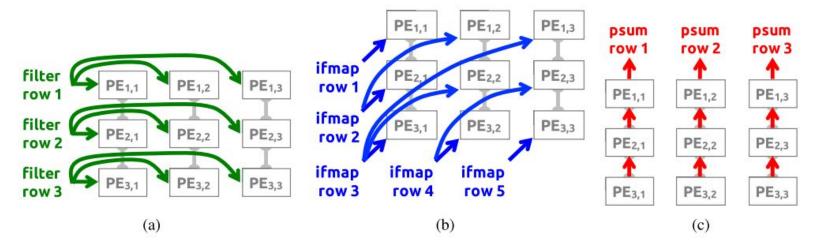
- The first popular end-to-end DNN (CNN) accelerator.
- Diannao is synthesized with 65nm using Synopsys tools, achieving a throughput of 482 GOP/s.
- NFU consists of three stages:
 - Multiplier units
 - \circ Adder tree
 - Nonlinear unit

Chen, Tianshi, et al. "Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning." *ACM SIGARCH Computer Architecture News* 42.1 (2014): 269-284.



- Eyeriss optimizes for the energy efficiency of the entire system, including the accelerator chip and off-chip DRAM, for various CNN shapes by reconfiguring the architecture.
- The core clock domain consists of a spatial array of 168 PEs organized as a 12 × 14 rectangle, a 108-kB GLB, an RLC CODEC, and an ReLU module.

Data Reuse for Memory Access Reduction



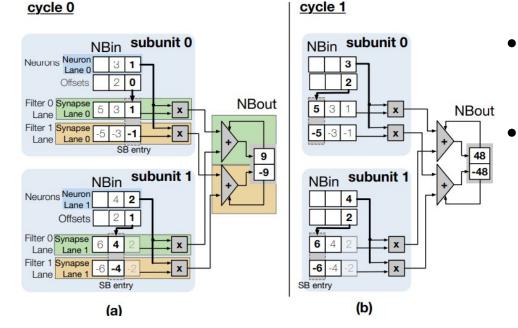
• Reuse and accumulation of data within a PE set reduce accesses to the GLB and DRAM, saving data movement energy cost.

Rerun-length encoding

Input: 0, 0, 12, 0, 0, 0, 0, 53, 0, 0, 22, ... *Run Level Run Level Run Level Term* Output (64b): 2 12 4 53 2 22 0 5b 16b 5b 16b 5b 16b 1b

• RLC is used for compressing the input activation.

Cnvlutin



Input: $[1, 0, 3] \rightarrow [1, 3]$ (input) [0, 2] (offset) Weight: [1, 3, 5]

- A large fraction of the computations performed by CNNs are intrinsically ineffectual as they involve a multiplication where one of the inputs is zero.
- Cnvlutin is a value-based approach to hardware acceleration that eliminates most of these ineffectual operations, improving performance and energy over a state-of-the-art accelerator with no accuracy loss.

Albericio, Jorge, et al. "Cnvlutin: Ineffectual-neuron-free deep neural network computing." *ACM SIGARCH Computer Architecture News* 44.3 (2016): 1-13.

Presentation

- <u>Kangaroo: Lossless Self-Speculative Decoding via Double Early Exiting</u> (Roshan)
- <u>SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks</u> (Lavanya, Murali)

