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Recap
● Federated Learning
● Distributed DNN Training
● Distributed DNN Inference
● Speculative Decoding
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Notes

● Project Proposal due Thursday
○ Signup your team

● Mid-semester Course Feedback
● Midterm Exam Review
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Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Hardware architecture of CNN accelerator
● Systolic array
● Popular accelerator design

○ Eyeriss
○ Diannao
○ Cnvlutin
○ EIE
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Hardware Support for DNN
● GPU is better than CPU in terms of throughput for both Neural Network training and inference. 

○ GPU leverages the highly parallelized architecture of its computing units to handle 
computational intensive operations. 

○ GPU has 10x-20x higher throughput than CPU.
● However, GPU:

○ General purpose.
○ Power consumption and latency is high.
○ Does not support sophisticated pruning and quantization algorithms.
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Hardware Support for DNN

Tensor Processing Unit (Google) Alveo Accelerator Card (Xilinx)

● ASIC-based implementations have been recently explored to accelerate the DNN inference.
○ Google’s TPU, Apple’s Neural Engine, Cerebras AI chip, …

● FPGA-based accelerators for DNN inference have been recently developed.
○ Has good programmability and flexibility
○ Short development cycles
○ Can be used as a benchmark before implementing on ASIC
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Flexibility & Performance

ASIC

FPGA

GPU

CPU

Flexibility

Energy 
efficiency

MOPS/W

GOPS/W

TOPS/W
CGRA

● ASIC offers the highest energy 
efficiency but is only suitable for 
specific applications.

● The CPU is a general-purpose 
processor but has the lowest energy 
efficiency.
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AI Accelerator
● Making any chip is a costly, difficult and lengthy process typically done by teams of 10 to 

1000’s of people depending on the size and complexity of the chip. 
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AI Accelerator
● The AI accelerator can execute part of the machine code that is related to the AI workload.
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AI Accelerator
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● The compute core consists of Multiply and accumulator (MAC) engine for 2D matrix 
multiplication.

● It also contains vector multiplier MAC as well as special function unit.
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AI Accelerator

NoC

CPU

DRAM

AI 
accelerator

…GPU

01001000 10001001 11011000  
01001000 10000011 11000000 00001010 
01001000 10000011 11101011 00000101  
01001000 00111001 11011000   
01110100 00000101    
01001000 10001001 11000001    
01001000 01101001 11001001 00000010   
01001000 10001001 00001111    
11101011 00000011    

import torch
import torch.nn as nn
input = torch.randn(1, 1, 5, 5)
conv = nn.Conv2d(1, 1, kernel_size=3)
output = conv(input)
print(output)

Compiler
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AI Accelerator
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AI Accelerator
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AI Accelerator
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AI Accelerator
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AI Accelerator
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AI Accelerator
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AI Accelerator
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AI Accelerator
Weight
SRAM

A
ctivation 
S

R
A

M

D
R

A
M

Compute 
core

AI Accelerator

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11

W01

W10

W11 X11

X01

X10

X11

W01

Y00

= Y00 Y01

Y10 Y11

Y01

W00X01

W00X00

…



20

AI Accelerator
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Memory Access Reduction
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● The computation and memory access pattern can be changed to minimize 
the computational cost without impacting the results.
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Memory Access Reduction
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● It is preferable to minimize memory access by maximizing the reuse of 
loaded data.
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Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Hardware architecture of CNN accelerator
● Systolic array
● Popular accelerator design

○ Eyeriss
○ Diannao
○ Cnvlutin
○ EIE



24

Convolutional Layers

● Core building block of a CNN, it is also the most computational intensive layer.

Convolution
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Convolution
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● Number of MACs: M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+C✕H✕W+M✕E✕F)

C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
K

C
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Convolution

...

...

...... Filters

Output Feature 
maps

Input Feature 
maps

...
...

...

...

...

...
...

...
(B, C, W, H) (B, M, E, F)



27

Convolution
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Convolution
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Computational Cost: Standard Convolution

● Number of MACs: B✕M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+B✕C✕H✕W+B✕M✕E✕F)

B: batch size
C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
K

● We need to iterate over seven dimensions:
○ B, M, C, E, F, K(kernel width), K (kernel height)
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Computational Dataflow for CNN
for b = 1 to B 
    for m = 1 to M 
        for c = 1 to C 
            for w = 1 to E 
                for h = 1 to F 
                    for k1 = 1 to K 
                        for k2 = 1 to K 
                            out[b][m][e][f] += in[b][c][e+k1-(K+1)/2][f+k2-(K+1)/2] * filter[m][c][k1][k2]; 

● This simple loop nest can be transformed in numerous ways to capture different reuse 
patterns of the activations and weights and to map the computation to a hardware 
accelerator implementation.

● A CNN’s dataflow defines how the loops are ordered, partitioned, and parallelized
● We can use the scaler machine to compute the results of CNN using this for loop

Scalar 
multiplierx

y

z=xy
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Computational Dataflow for CNN
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How to Convert to Matrix Multiplication?

● A standard Convolutional operation 
can be converted to 2D matrix 
multiplication using Im2Col 
operations.
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How to Convert to Matrix Multiplication?

Weight 
matrix

Input matrix
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✕
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How to Convert to Matrix Multiplication?
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Tiling
● In order to handle matrix multiplication with large size, it is usually 

decomposed into tiles.

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11
= Y00 Y01

Y10 Y11

● Each of Wij and Xij can be a sub-matrix.
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Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Hardware architecture of CNN accelerator
● Systolic array
● Popular accelerator design

○ Eyeriss
○ Diannao
○ Cnvlutin
○ EIE
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Hardware Architectures for DNN Processing
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Major building blocks:
● Processing engine
● Accumulator
● Reg file
● Special function unit
● Memory subsystem

○ Weight SRAM
○ Data SRAM
○ DRAM
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Computing Paradigms

Memory
W1

Memory

W1

A1

Y1

Memory
W2

● Spatial architecture can achieve great reuse of the extracted content, 
leading to a reduced memory access cost.
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Double Buffering

Mem1 Mem2

Systolic 
Array

DRAM

Mem1 Mem2

Systolic 
Array

DRAM

● Double buffering in hardware 
design is a technique used to 
improve the efficiency and 
performance of data processing, 
especially in systems that 
require smooth and continuous 
data transfer.

● The idea is to overlap the data 
production and consumption 
processes to avoid delays.
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Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Hardware architecture of CNN accelerator
● Systolic array
● Popular accelerator design

○ Eyeriss
○ Diannao
○ Cnvlutin
○ EIE
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Systolic Array (Weight Stationary Version)
● Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982
● 2D grid of multiplier-accumulators (MACs) for matrix multiplication
● Used by Google TPU for deep learning (2017), etc

2D Systolic Array

x

v

z = w·x + y
v = x

z

Systolic cell

y

TPU (Google)
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Systolic Cell

● Takes data (x and y) as input
● w stays in the systolic cell
● Performs a multiply-accumulate 

operation

v

z = w·x + y
v = x

zy

x
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Systolic Cell
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Systolic Cell
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z = w·4 + 2
zy=2

x=4
w is stored in 
the MAC 
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Systolic Cell
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Systolic Cell

v=4

z=26
z = 6·4 + 2
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Visualizing Systolic Array Multiplication
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Visualizing Systolic Array Multiplication
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Visualizing Systolic Array Multiplication
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Visualizing Systolic Array Multiplication
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Visualizing Systolic Array Multiplication
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Visualizing Systolic Array Multiplication
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Topics
● Convolutional operation conversion
● Hardware architecture of CNN accelerator
● Systolic array
● Popular accelerator design

○ Eyeriss
○ Diannao
○ Cnvlutin
○ EIE

Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks." 
IEEE journal of solid-state circuits 52.1 (2016): 127-138.
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Diannao

Chen, Tianshi, et al. "Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning." ACM 
SIGARCH Computer Architecture News 42.1 (2014): 269-284.

● The first popular end-to-end 
DNN (CNN) accelerator.

● Diannao is synthesized with 
65nm using Synopsys tools, 
achieving a throughput of 482 
GOP/s.

● NFU consists of three stages:
○ Multiplier units
○ Adder tree
○ Nonlinear unit
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Eyeriss

● Eyeriss optimizes for the energy efficiency of the entire system, including the accelerator 
chip and off-chip DRAM, for various CNN shapes by reconfiguring the architecture.

● The core clock domain consists of a spatial array of 168 PEs organized as a 12 × 14 
rectangle, a 108-kB GLB, an RLC CODEC, and an ReLU module.
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Data Reuse for Memory Access Reduction

● Reuse and accumulation of data within a PE set reduce accesses to the GLB 
and DRAM, saving data movement energy cost.
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Rerun-length encoding

● RLC is used for compressing the input activation.
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Cnvlutin

Albericio, Jorge, et al. "Cnvlutin: Ineffectual-neuron-free deep neural network computing." ACM SIGARCH Computer 
Architecture News 44.3 (2016): 1-13.

● A large fraction of the computations 
performed by CNNs are intrinsically 
ineffectual as they involve a multiplication 
where one of the inputs is zero.

● Cnvlutin is a value-based approach to 
hardware acceleration that eliminates most 
of these ineffectual operations, improving 
performance and energy over a 
state-of-the-art accelerator with no accuracy 
loss.

Input: [1, 0, 3] → [1, 3] (input) [0, 2] (offset)
Weight: [1, 3, 5] 
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Presentation

● Kangaroo: Lossless Self-Speculative Decoding via Double Early Exiting (Roshan)

● SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks 
(Lavanya, Murali)

https://docs.google.com/presentation/d/1naBil7duUIkTLdiXIPffandOFcMi8YVdFD2SzsKI8ic/edit?usp=sharing
https://docs.google.com/presentation/d/1TJfsi9kYVPzMe_fbSbNPlE_QJWrI_hRFFlMLrRUvYKY/edit?usp=sharing
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