
Lecture 09:
CNN Dataflow & Hardware

Accelerators

2

Recap
● Federated Learning
● Distributed DNN Training
● Distributed DNN Inference
● Speculative Decoding

3

Notes

● Project Proposal due Thursday
○ Signup your team

● Mid-semester Course Feedback
● Midterm Exam Review

4

Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Hardware architecture of CNN accelerator
● Systolic array
● Popular accelerator design

○ Eyeriss
○ Diannao
○ Cnvlutin
○ EIE

5

Hardware Support for DNN
● GPU is better than CPU in terms of throughput for both Neural Network training and inference.

○ GPU leverages the highly parallelized architecture of its computing units to handle
computational intensive operations.

○ GPU has 10x-20x higher throughput than CPU.
● However, GPU:

○ General purpose.
○ Power consumption and latency is high.
○ Does not support sophisticated pruning and quantization algorithms.

6

Hardware Support for DNN

Tensor Processing Unit (Google) Alveo Accelerator Card (Xilinx)

● ASIC-based implementations have been recently explored to accelerate the DNN inference.
○ Google’s TPU, Apple’s Neural Engine, Cerebras AI chip, …

● FPGA-based accelerators for DNN inference have been recently developed.
○ Has good programmability and flexibility
○ Short development cycles
○ Can be used as a benchmark before implementing on ASIC

7

Flexibility & Performance

ASIC

FPGA

GPU

CPU

Flexibility

Energy
efficiency

MOPS/W

GOPS/W

TOPS/W
CGRA

● ASIC offers the highest energy
efficiency but is only suitable for
specific applications.

● The CPU is a general-purpose
processor but has the lowest energy
efficiency.

8

AI Accelerator
● Making any chip is a costly, difficult and lengthy process typically done by teams of 10 to

1000’s of people depending on the size and complexity of the chip.

Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Register
fileCPU

Compute
core

AI Accelerator
~GB

9

AI Accelerator
● The AI accelerator can execute part of the machine code that is related to the AI workload.

Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Register
file

CPU Compute
core

NoC

CPU

DRAM

AI
accelerator

…

AI Accelerator

GPU

10

AI Accelerator

Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Register
file

CPU
Compute

core

AI Accelerator

Matrix MAC S
pecial

 Function
 unit

Vector MAC

● The compute core consists of Multiply and accumulator (MAC) engine for 2D matrix
multiplication.

● It also contains vector multiplier MAC as well as special function unit.

11

AI Accelerator

NoC

CPU

DRAM

AI
accelerator

…GPU

01001000 10001001 11011000
01001000 10000011 11000000 00001010
01001000 10000011 11101011 00000101
01001000 00111001 11011000
01110100 00000101
01001000 10001001 11000001
01001000 01101001 11001001 00000010
01001000 10001001 00001111
11101011 00000011

import torch
import torch.nn as nn
input = torch.randn(1, 1, 5, 5)
conv = nn.Conv2d(1, 1, kernel_size=3)
output = conv(input)
print(output)

Compiler

12

AI Accelerator

NoC

CPU

DRAM

AI
accelerator

…GPU

NoC

CPUAI
accelerator

…GPU

DRAM

13

AI Accelerator

NoC

CPU

DRAM

AI
accelerator

…GPU

NoC

CPUAI
accelerator

…GPU

DRAM

14

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

RF

Compute
core

AI Accelerator

Matrix MAC S
pecial

 Function
 unit

Vector MAC

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11
= Y00 Y01

Y10 Y11

W01

W10

W11

X01

X10

X11

W00X00

15

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

RF

Compute
core

AI Accelerator

Matrix MAC S
pecial

 Function
 unit

Vector MAC

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11
= Y00 Y01

Y10 Y11

D
R

A
M

W01

W10

W11

X01

X10

X11

W00X00

16

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI Accelerator

X00W00

X00
0

W00

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11
= Y00 Y01

Y10 Y11

W01

W10

W11

X01

X10

X11

W00X00

17

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI Accelerator

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11

X10

W01

W00X00

Y00

= Y00 Y01

Y10 Y11

W01

W10

W11

X01

X10

X11

W00X00

18

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI Accelerator

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11

X01

W00

0

Y00

= Y00 Y01

Y10 Y11

X01W00

W01

W10

W11

X01

X10

X11

W00X00

19

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI Accelerator

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11

W01

W10

W11 X11

X01

X10

X11

W01

Y00

= Y00 Y01

Y10 Y11

Y01

W00X01

W00X00

…

20

AI Accelerator
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI Accelerator

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11

W01

W10

W11 X11

X01

X10

X11

W11
Y00

= Y00 Y01

Y10 Y11

Y11

W10X01

Y01

W00X00

…
Y11

Y10

21

Memory Access Reduction
Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI AcceleratorX10

W01

W00X00

Y00

W01

W10

W11

X01

X10

X11

W00X00

Weight
SRAM

A
ctivation
S

R
A

M

D
R

A
M

Compute
core

AI Accelerator

W01

W10

W11

X11

X01

X10

X11

W01
Y00

0

W00X00

W01X11

● The computation and memory access pattern can be changed to minimize
the computational cost without impacting the results.

22

Memory Access Reduction

W01

Weight
SRAM

Compute
core

W01

Weight
SRAM

Compute
core

… W01

Weight
SRAM

Compute
core

● It is preferable to minimize memory access by maximizing the reuse of
loaded data.

23

Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Hardware architecture of CNN accelerator
● Systolic array
● Popular accelerator design

○ Eyeriss
○ Diannao
○ Cnvlutin
○ EIE

24

Convolutional Layers

● Core building block of a CNN, it is also the most computational intensive layer.

Convolution

 =

 *

 = *

 *
Filter Output feature mapInput feature maps

=

 =

 =

 + +

Step 1 Step 2

H

W

C

25

Convolution

...

...

......

Filters

Output Feature
maps

H

W

C

E

F

M

Input Feature
maps

Conv
...

...
Conv

Conv

M

● Number of MACs: M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+C✕H✕W+M✕E✕F)

C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
K

C

26

Convolution

...

...

...... Filters

Output Feature
maps

Input Feature
maps

...
...

...

...

...

...
...

...
(B, C, W, H) (B, M, E, F)

27

Convolution

...

...

Filters

Output Feature
maps

Input Feature
maps

...
...

...

...

...

...
...

...

... ...

(B, C, W, H) (B, M, E, F)

28

Convolution

...

...

Filters

Output Feature
maps

Input Feature
maps

...
...

...

...

...
...

...

... ...

...
(B, C, W, H) (B, M, E, F)

29

Computational Cost: Standard Convolution

● Number of MACs: B✕M✕K✕K✕C✕E✕F
● Storage cost:

32✕(M✕C✕K✕K+B✕C✕H✕W+B✕M✕E✕F)

B: batch size
C: number of input channels
H,W: size of the input feature maps
M: number of weight filters
K: weight kernel size
E,F: size of the output feature maps

K
K

● We need to iterate over seven dimensions:
○ B, M, C, E, F, K(kernel width), K (kernel height)

30

Computational Dataflow for CNN
for b = 1 to B
 for m = 1 to M
 for c = 1 to C
 for w = 1 to E
 for h = 1 to F
 for k1 = 1 to K
 for k2 = 1 to K
 out[b][m][e][f] += in[b][c][e+k1-(K+1)/2][f+k2-(K+1)/2] * filter[m][c][k1][k2];

● This simple loop nest can be transformed in numerous ways to capture different reuse
patterns of the activations and weights and to map the computation to a hardware
accelerator implementation.

● A CNN’s dataflow defines how the loops are ordered, partitioned, and parallelized
● We can use the scaler machine to compute the results of CNN using this for loop

Scalar
multiplierx

y

z=xy

31

Computational Dataflow for CNN

Scalar
multiplierx

y

z=xy Vector
Multiplierx

y

z=xTy

Matrix
MultiplierX

Y

Z=XY

efficiency

Fl
ex

ib
ili

ty Scaler
machine

Matrix
machineTPU

CPU & GPU

32

How to Convert to Matrix Multiplication?

● A standard Convolutional operation
can be converted to 2D matrix
multiplication using Im2Col
operations.

33

How to Convert to Matrix Multiplication?

Weight
matrix

Input matrix
a00 a01 a02

a10 a11 a12

a20 a21 a22

a03

a13

a23

a30 a31 a32 a33

w00 w01 w02

w10 w11 w12

w20 w21 w22

a00 a01 a02 a10 a11 a12 a20 a21 a22

a01 a02 a03 a11 a12 a13 a21 a22 a23

a10 a11 a12 a20 a21 a22 a30 a31 a32

a11 a12 a13 a21 a22 a23 a31 a32 a33

w00

w01

w02

w10

w11

w12

w20

w21

w22

*

Input feature map
Weight filter

✕

34

How to Convert to Matrix Multiplication?

CK2

B
E

F

M

✕ = B
E

F

M
Input feature

maps
Output

feature maps
Filters

C
K

2

35

Tiling
● In order to handle matrix multiplication with large size, it is usually

decomposed into tiles.

X00 X01

X10 X11

W00 W01

W10 W11
✕

W00X00+W01X10= W00X01+W01X11

W10X00+W11X10 W10X01+W11X11
= Y00 Y01

Y10 Y11

● Each of Wij and Xij can be a sub-matrix.

36

Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Hardware architecture of CNN accelerator
● Systolic array
● Popular accelerator design

○ Eyeriss
○ Diannao
○ Cnvlutin
○ EIE

37

Hardware Architectures for DNN Processing

Processing
engine

Data
SRAM

S
pe

ci
al

Fu

nc
tio

n
U

ni
t

A
cc

um
ul

at
or

0

Read/Write

Reg
File

Control bits

Weight
SRAM

Memory controller

DRAM

Major building blocks:
● Processing engine
● Accumulator
● Reg file
● Special function unit
● Memory subsystem

○ Weight SRAM
○ Data SRAM
○ DRAM

38

Computing Paradigms

Memory
W1

Memory

W1

A1

Y1

Memory
W2

● Spatial architecture can achieve great reuse of the extracted content,
leading to a reduced memory access cost.

39

Double Buffering

Mem1 Mem2

Systolic
Array

DRAM

Mem1 Mem2

Systolic
Array

DRAM

● Double buffering in hardware
design is a technique used to
improve the efficiency and
performance of data processing,
especially in systems that
require smooth and continuous
data transfer.

● The idea is to overlap the data
production and consumption
processes to avoid delays.

40

Topics
● Hardware accelerator: Overview
● Convolutional operation conversion
● Hardware architecture of CNN accelerator
● Systolic array
● Popular accelerator design

○ Eyeriss
○ Diannao
○ Cnvlutin
○ EIE

41

Systolic Array (Weight Stationary Version)
● Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982
● 2D grid of multiplier-accumulators (MACs) for matrix multiplication
● Used by Google TPU for deep learning (2017), etc

2D Systolic Array

x

v

z = w·x + y
v = x

z

Systolic cell

y

TPU (Google)

42

Systolic Cell

● Takes data (x and y) as input
● w stays in the systolic cell
● Performs a multiply-accumulate

operation

v

z = w·x + y
v = x

zy

x

43

Systolic Cell

v

z = w·x + y
v = x

zy=2

x=4

44

Systolic Cell

v

z = w·4 + 2
zy=2

x=4
w is stored in
the MAC

45

Systolic Cell

v

z = 6·4 + 2
zy=2

x=4

46

Systolic Cell

v=4

z=26
z = 6·4 + 2

47

Visualizing Systolic Array Multiplication

 2 -1
 3-2

 1
 0

 0
 3

 0
 6

-1
 1

Data
Matrix

Weight
Matrix

Result
Matrix

 1
-4

 -2 2

1
0 0

3 -2
2

 2 0 + 0

-2 0 + 0 3 0 + 0

-1 0 + 0 1 0 + 0

-4 0 + 0

0

0

0 0 0

0

0

0

0

Weights in red are preloaded
into the systolic array Skewed

input

48

Visualizing Systolic Array Multiplication

 2 -1
 3-2

 1
 0

 0
 3

 0
 6

-1
 1

Data
Matrix

Weight
Matrix

Result
Matrix

 1
-4

 -2 2

0 0
3 -2

2

 2 1 + 0

-2 0 + 0 3 0 + 0

-1 0 + 0 1 0 + 0

-4 0 + 0

0

0

1 0 0

0

2

0

0

Weights in red are preloaded
into the systolic array

49

Visualizing Systolic Array Multiplication

 2 -1
 3-2

 1
 0

 0
 3

 0
 6

-1
 1

Data
Matrix

Weight
Matrix

Result
Matrix

 1
-4

 -2 2

3 -2
2

 2 0 + 0

-2 1 + 0 3 0 + 0

-1 0 + 2 1 0 + 0

-4 0 + 0

0

0

0 0 0

-2

0

0

2

Weights in red are preloaded
into the systolic array

50

Visualizing Systolic Array Multiplication

 2 -1
 3-2

 1
 0

 0
 3

 0
 6

-1
 1

Data
Matrix

Weight
Matrix

Result
Matrix

 1
-4

 -2 2

2

 2 0 + 0

-2 0 + 0 3 0 + -2

-1 3 + 0 1 -2 + 2

-4 0 + 0

0

0

0

0 3 -2

0

0

-2

-3

Weights in red are preloaded
into the systolic array

51

Visualizing Systolic Array Multiplication

 2 -1
 3-2

 1
 0

 0
 3

 0
 6

-1
 1

Data
Matrix

Weight
Matrix

Result
Matrix

 1
-4

 -2 2 2 0 + 0

-2 0 + 0 3 3 + 0

-1 0 + 0 1 2 + -3

-4 -2 + -2

0

0 6

-1, 0

0 0 2

0

0

9

0

Weights in red are preloaded
into the systolic array

52

Visualizing Systolic Array Multiplication

 2 -1
 3-2

 1
 0

 0
 3

 0
 6

-1
 1

Data
Matrix

Weight
Matrix

Result
Matrix

 1
-4

 -2 2 2 0 + 0

-2 0 + 0 3 0 + 0

-1 0 + 0 1 0 + 0

-4 2 + 9

0

0 1, 6

 , -1, 0

0 0 0

0

0

0

0

Weights in red are preloaded
into the systolic array

53

Topics
● Convolutional operation conversion
● Hardware architecture of CNN accelerator
● Systolic array
● Popular accelerator design

○ Eyeriss
○ Diannao
○ Cnvlutin
○ EIE

Chen, Yu-Hsin, et al. "Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks."
IEEE journal of solid-state circuits 52.1 (2016): 127-138.

54

Diannao

Chen, Tianshi, et al. "Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning." ACM
SIGARCH Computer Architecture News 42.1 (2014): 269-284.

● The first popular end-to-end
DNN (CNN) accelerator.

● Diannao is synthesized with
65nm using Synopsys tools,
achieving a throughput of 482
GOP/s.

● NFU consists of three stages:
○ Multiplier units
○ Adder tree
○ Nonlinear unit

55

Eyeriss

● Eyeriss optimizes for the energy efficiency of the entire system, including the accelerator
chip and off-chip DRAM, for various CNN shapes by reconfiguring the architecture.

● The core clock domain consists of a spatial array of 168 PEs organized as a 12 × 14
rectangle, a 108-kB GLB, an RLC CODEC, and an ReLU module.

56

Data Reuse for Memory Access Reduction

● Reuse and accumulation of data within a PE set reduce accesses to the GLB
and DRAM, saving data movement energy cost.

57

Rerun-length encoding

● RLC is used for compressing the input activation.

58

Cnvlutin

Albericio, Jorge, et al. "Cnvlutin: Ineffectual-neuron-free deep neural network computing." ACM SIGARCH Computer
Architecture News 44.3 (2016): 1-13.

● A large fraction of the computations
performed by CNNs are intrinsically
ineffectual as they involve a multiplication
where one of the inputs is zero.

● Cnvlutin is a value-based approach to
hardware acceleration that eliminates most
of these ineffectual operations, improving
performance and energy over a
state-of-the-art accelerator with no accuracy
loss.

Input: [1, 0, 3] → [1, 3] (input) [0, 2] (offset)
Weight: [1, 3, 5]

59

Presentation

● Kangaroo: Lossless Self-Speculative Decoding via Double Early Exiting (Roshan)

● SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks
(Lavanya, Murali)

https://docs.google.com/presentation/d/1naBil7duUIkTLdiXIPffandOFcMi8YVdFD2SzsKI8ic/edit?usp=sharing
https://docs.google.com/presentation/d/1TJfsi9kYVPzMe_fbSbNPlE_QJWrI_hRFFlMLrRUvYKY/edit?usp=sharing

60

